Modelling Technical Progress: An Application of The Stochastic Trend Model To UK Energy Demand

Lester C Hunt, Guy Judge and Yasushi Ninomiya

January 2000
SEEC consists of members of the Department of Economics who work on energy and environmental economics. SEEC's aims include the promotion of research and teaching in the broad area of energy economics and policy. SEEC was founded in 1983. Its creation was intended to consolidate the research on energy economics which developed at the University of Surrey after the appointment of Colin Robinson to the Chair of Economics in 1968. Colin and the colleagues he attracted to the University built up Surrey's reputation, initially with pioneering work on North Sea oil and gas, and subsequently in all the other major areas of energy economics.

- Recent research covers the following areas: Electricity, gas and coal privatisation in the UK; privatisation in the Middle East; the structure of UK energy demand; North Sea oil and gas economics and policy; international oil markets; electricity economics; the transport of energy; environmental policy in the UK; energy and environmental policy in the Third World; global environmental issues.

- SEEC research output includes SEEDS - Surrey Energy Economic Discussion paper Series (recent titles may be found on the backcover), as well as a range of other academic papers, books and monographs including SEEC Occasional Papers and SEEDS Technical Papers.

- Each year SEEC organises a range of energy conferences and workshops on energy themes. Specialist workshops include the meetings of the joint SEEC/BIEE Energy Modelling Group, convened by David Hawdon and Paul Appleby (BP).

- Members of SEEC provide major inputs into the postgraduate energy courses run by the Economics Department - in particular, the M.Sc. courses on Energy Economics and Energy Policy, and the Diploma in the Economics of Energy and Development for Graduates.

Enquiries:

Director of SEEC and Editor of SEEDS:
David Hawdon email: d.hawdon@surrey.ac.uk

SEEC, Economics Dept, School of Human Sciences,
University of Surrey, Guildford GU2 5XH, UK.
Telephone: +44 (0)1483 259379 Fax: +44 (0)1483 259548
Modelling Technical Progress: An Application of The Stochastic Trend Model To UK Energy Demand

Lester C Hunt, Guy Judge and Yasushi Ninomiya

January 2000

ISBN: 1852372273
January 2000

This paper may not be quoted or reproduced without permission

British Library Cataloguing-in-Publication Data.
A Catalogue record for this book is available from the British Library
ABSTRACT

The precise role of technical progress in estimated energy demand functions has not been well researched. Traditionally a deterministic time trend has been used, implicitly assuming technical progress continues at a fixed rate over time. In this paper, the structural time series model is employed allowing for a stochastic time trend and stochastic seasonal dummies. Therefore, technical progress and seasonal variation are treated as unobservable components that evolve over time. The conventional deterministic trend model is a restricted case of the structural time series model and found not to be accepted by the data for a number of energy types.

Energy demand functions for a variety of energy types are estimated for the UK using unadjusted quarterly data. It is found that technical progress in energy usage does not always exhibit a deterministic trend pattern as the conventional model assumes. It often fluctuates over time and is likely to be affected by a range of exogenous factors but also by changes in energy prices (and possibly income also).

JEL Classification Numbers: C52, Q41;

Keywords: energy demand, technical progress, stochastic trend model, seasonality;
I INTRODUCTION

Estimation of Energy Demand functions has a long history with many different methodologies, sectors, and countries analysed. This paper focuses on the modelling of technical progress and the modelling of seasonality. The modelling of technical progress in energy demand functions has tended to be of a very simple nature with it ignored completely or, at best, proxied by a simple deterministic time trend. Similarly, the modelling of seasonality in energy demand functions has traditionally adopted the simple deterministic dummy approach - despite energy being a product where there has been a clear change in the seasonal pattern over time.

It is important to consider exactly what is meant by ‘technical progress’ when incorporated in energy demand functions. Energy is a derived demand, not demanded for its own sake, but for the services it produces in combination with the capital and appliance stock in place at any particular point in time. The challenge for energy demand modellers (and forecasters) is to attempt to distinguish between changes in energy demand that come about through changes in energy prices and income\(^1\), and the underlying changes that come about from ‘technical progress’. Jones (1994) points out that ‘technical progress’ in energy demand, or the improvement in the ‘productivity’ of energy

\(^1\) Plus other important variables such as temperature.
use over time, will come about by the improved ‘efficiency’ of the appliance and capital stock, and hence shift the energy demand curve to the left. Jones goes on, stating that “price increases, if sustained, can … provide the necessary incentive for energy users to find new ways to increase energy’s productivity” (p. 245). However, as Jones also points out, many other non-price factors contribute to improvements in the technical progress of energy. These include environmental pressures and regulations, energy efficiency standards, substitution of labour, capital or raw materials for energy inputs, and changes in tastes leading to a shift in consumption towards goods and services that are less energy intensive.

Jones (1994) goes on to argue that the “reductions in aggregate energy demand due to technical progress are distinct from the standard long-run adjustments to price increases that energy consumers make as they gradually replace their energy using capital stock and slowly change their energy consumption habits and patterns” (p. 245). It is important, therefore, to distinguish between the ‘price’ effects and the ‘technical progress’ effects. In the short-run, with a fixed appliance and capital stock, a rise in the energy price is likely to bring about a modest fall in energy consumption. Energy consumption will fall further in the long-run as the price rise induces the installation of more energy efficient appliances and capital stock. But, we would argue that this is a combination of the normal process of moving along the long-run demand curve (the long-run
price elasticity) and partly the movement to the left of the demand curve (the technical progress effect). This could be thought of as the long-run price elasticity measuring changes within ‘normal bounds’ with the technical progress effect picking up price ‘shock’ effects. Hence, *ceteris paribus*, a model that does not explicitly model technical progress will *over-estimate* the (absolute) long-run price elasticity since it will be forced to pick up both effects.

In addition, contrary to the view of Kouris (1983), we agree with Beenstock and Willcocks (1983) and Welsch (1989), that there is a distinct role for the long-run income elasticity of energy demand within this framework. Increases in income or output will, in the short-run, bring about an increase in energy demand with the given appliance and capital stock (and could be quite significant before households and firms have time to adjust their stock of appliances). Over time however, new and more efficient appliances will be installed and existing appliances replaced faster than would be otherwise. Hence, similar to the price effect a distinction needs to be made between the long-run income effect and the technical progress effect. The increase in income will, in the long-run, bring about an increase in the demand for energy (as new appliances and stock are acquired) which represents the long-run income effect. Furthermore, the increase in income may also induce the replacement of the existing stock of capital with ‘up-graded’ more efficient models and hence an improvement in energy ‘productivity’ (which is the
technical progress effect). Here, however, *ceteris paribus*, a specification that does not explicitly model technical progress might *under-estimate* the long-run income elasticity since it will be forced to pick up both effects.\(^2\)

Whatever factors are driving technical progress it is unlikely that a simple deterministic time trend will adequately capture the underlying processes at play. On this point we agree with Kouris (1983) who stated that a variable “which takes the clumsy values 1, 2, 3, … etc, over time will not do the trick” (p. 207) and that “the issue of technical progress, in estimating energy demand functions, cannot really be tackled unless a satisfactory way of measuring this phenomenon can be found” (p. 210). However, he further argues that when modelling energy demand for various sectors there might be certain engineering data \(^3\) that could be considered as a proxy for technical progress, that would be better than a deterministic time trend but in the absence of these proxies “it is probably preferable … to estimate the income and price effect *without* explicitly allowing for technical progress” (p. 210, our italics). In their reply, Beenstock and Willcocks (1983) reject this stating that “time trends may be poor proxies for technical progress, but for the lack of anything better this is standard practice” (p. 212). Thankfully, this argument is now redundant given the

\(^2\) In addition, we would expect, *a priori*, that a dynamic model that does not explicitly model technical progress will *under-estimate* the speed of adjustment towards equilibrium.

\(^3\) For example ‘the ratio of miles per gallon over time for an average engine size’ for the transport sector, ‘the energy efficiency of a standard boiler’ for the industrial sector and ‘the energy needed to raise temperature to a given degree for a certain space’ for the household sector (p. 210).
advance in certain econometric techniques. Although the engineering data that Kouris refers to are still not readily available, the Basic Structural Model developed by Harvey and his associates, see for example, Harvey et al. (1986), Harvey (1989), Harvey and Scott (1994) and Harvey (1997), allows for a non-linear stochastic trend that, when used in estimates of energy demand functions, overcomes most, if not all, of the problems put forward by Kouris. Moreover, the use of the simple deterministic time trend becomes a limiting case that is present only if statistically accepted by the data.

In summary, we argue that there is a specific role for a general model of energy demand that allows for both short- and long-run price and income elasticities and the most ‘general’ or ‘flexible’ form of technical progress possible. This will ensure that the model captures the underlying technical progress effects outlined above avoiding the upward-bias of the long-run price elasticity and the downward-bias of the long-run income elasticity. Moreover, the more flexible the trend is the smaller these biases are likely to be. Any restriction on the general form, (such as a zero long-run income elasticity, or a deterministic trend) should, therefore, only be imposed if accepted by the data.

4 This discussion implicitly assumes that the ‘underlying’ trend is negative with improvements in energy ‘productivity’ and hence technical progress reduces energy consumption. If however, the underlying trend is positive and therefore technical progress is negative (due, for example to a fundamental shift in tastes into a particular energy type, as we find with gas below) then the biases would be in the opposite directions.
Turning briefly to the issue of seasonality, Hunt and Judge (1996) explored the evolution of seasonal patterns in some UK energy series, but did not consider the technical progress issue. Again, it is important to start with as general a model as possible with deterministic seasonal dummies as the limiting case. The model outlined in the next section therefore allows for an evolving seasonal pattern over time. Hence, we attempt to explicitly model for both stochastic technical progress and stochastic seasonality for UK Final Consumption of Coal, Gas, Petroleum, Electricity and Total Energy. The exact definitions and the sources of the data are given in the Data Appendix. Section II, therefore, outlines the methodology employed in the estimation and Section III presents the results. Section IV offers a brief summary and conclusion.

II METHODOLOGY

Given the above discussion the framework adopted for this study combines Harvey’s Basic Structural Model (BSM) with the dynamic Error Correction Model (ECM). The ECM is formulated as a BSM to estimate the stochastic trend and stochastic seasonal components in addition to the traditional estimates of short- and long-run price and income elasticities of energy demand as discussed above.
Basic Structural Model (BSM)

The BSM allows for the unobservable trend and seasonal components which are permitted to vary stochastically over time. Consider the following quarterly model:

\[e_t = \mu_t + \gamma_t + Z_t' \delta + \varepsilon_t \]

(1)

where \(e_t \) is the dependent variable in logs (energy), \(\mu_t \) represents the trend component, \(\gamma_t \) represents the seasonal component, \(\varepsilon_t \) represents the irregular component, \(Z_t \) is a \(k \times 1 \) vector of explanatory variables in logs (price, income and temperature) and \(\delta \) is a \(k \times 1 \) vector of unknown parameters.

Trend Component

The trend component \(\mu_t \) is assumed to have the following stochastic process:

\[\mu_t = \mu_{t-1} + \beta_{t-1} + \eta_t \]

(2)

\[\beta_t = \beta_{t-1} + \xi_t \]

(3)

where \(\eta_t \sim NID(0, \sigma_\eta^2) \) and \(\xi_t \sim NID(0, \sigma_\xi^2) \).

Equations (2) and (3) represent the level and the slope of the trend respectively. This process can be interpreted as the trend today is the trend of yesterday plus some growth term plus some unpredictable noise, in which the growth term is the slope and is time-varying. Table 1 illustrates the various models that can be
estimated from this process. Cell (ix) of Table 1 represents the most general model when $\sigma_\eta^2 \neq 0$ and $\sigma_\xi^2 \neq 0$ so that both the level and slope of the trend change stochastically over the sample period. The remaining cells of Table 1 represent possible restricted alternatives, depending upon the estimates of the level and slope of the trend and the hyperparameters, σ_ξ^2 and σ_η^2.\(^5\)

Cells (i), (ii) and (v) illustrate the conventional regression models (ignoring evolving seasonals) that are special cases of the general stochastic trend models. When both variances are zero, namely $\sigma_\eta^2 = 0$ and $\sigma_\xi^2 = 0$, the model reverts to a conventional deterministic linear trend model, cell (v), as follows:

$$e_i = \alpha + \beta t + Z_i \delta + \epsilon_i$$

which can be estimated by OLS. If, in addition, the slope is found to be zero, slp = 0, then the model reverts to a conventional regression model without a time trend, cell (ii). And if the level is also found to be zero, lvl = 0, then the model reverts to a conventional regression with no time trend and no constant, cell (i).

Cells (iii), (vi) and (viii) are restricted versions of the general stochastic trend model but still involve some form of stochastic trend in the level or slope. If

\(^5\) Cells (iv) and (vii) are ignored since it is not possible to estimate models of this type.
Table 1: Classification of Possible Stochastic Trend Models

<table>
<thead>
<tr>
<th>Slope</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Level</td>
<td>No Level</td>
<td>Lvl = 0, $\sigma^2 = 0$</td>
</tr>
<tr>
<td>No Slope</td>
<td>Fixed Level</td>
<td>Lvl $\neq 0$, $\sigma^2 = 0$</td>
</tr>
<tr>
<td>Stochastic Slope</td>
<td>Stochastic Level</td>
<td>Lvl $\neq 0$, $\sigma^2 \neq 0$</td>
</tr>
<tr>
<td></td>
<td>(i) Conventional regression but with no constant and no time trend.</td>
<td></td>
</tr>
<tr>
<td>Fixed Slope</td>
<td>(ii) Conventional regression with a constant but no time trend.</td>
<td></td>
</tr>
<tr>
<td>Stochastic Slope</td>
<td>(iii) Local Level Model (random walk plus noise).</td>
<td></td>
</tr>
<tr>
<td>Fixed Slope</td>
<td>(iv) Conventional regression with a constant and a time trend.</td>
<td></td>
</tr>
<tr>
<td>Stochastic Slope</td>
<td>(v) Local Level Model with Drift.</td>
<td></td>
</tr>
<tr>
<td>Stochastic Slope</td>
<td>(vi) Smooth Trend Model.</td>
<td></td>
</tr>
<tr>
<td>Stochastic Slope</td>
<td>(vii) Local Trend Model.</td>
<td></td>
</tr>
</tbody>
</table>

The seasonal component is omitted at this stage for simplicity.

6 The seasonal component is omitted at this stage for simplicity.
σ_η^2 ≠ 0 but σ_ξ^2 = 0 the trend is the Local Level Model with Drift provided the slope is non-zero (slp ≠ 0), cell (vi) or the Local Level Model (random walk with drift) if the there is no slope (slp = 0), cell (iii). If, however, σ_η^2 = 0 but σ_ξ^2 ≠ 0 it is the Smooth Trend Model, cell (viii).

Seasonal Component

In addition, the ‘general’ seasonal model allows the component γ_t to have the following stochastic process:

\[S(L)γ_t = ω_t \] \hspace{1cm} (5)

where \(ω_t \sim NID(0, σ_ω^2) \) and \(S(L) = 1 + L + L^2 + L^3 \).

The conventional case (ignoring the stochastic trend) is again a restricted version of this when \(σ_ω^2 = 0 \) with \(γ_t \) reducing to the familiar deterministic seasonal dummy variable model. If not, however, seasonal components are moving stochastically over time.

7 Boone et al. (1995) and Smith et al. (1995) have attempted to estimate an aggregate UK primary energy demand function using a different form of stochastic trend model. Their model treats the trend \(β_t \) as an endogenous variable dependent upon exogenous factors such as the energy price and the share of manufacturing output in total GDP. Consequently, only the slope, \(β_t \) is considered as “pure” stochastic. In addition, they implicitly impose a long-run income elasticity of unity.

8 The irregular component \(ε_t \) reflects non-systematic movements and is assumed to be white noise.
Dynamic (ECM) Models incorporating Stochastic Trend and Seasonals

Harvey, et al. (1986) estimated an employment function (using seasonally adjusted data) but incorporating a stochastic trend that fitted well and encompassed rival formulations. Harvey and Scott (1994) estimated an ECM for the UK consumption function that included stochastic seasonal variables and showed that it out performed the standard ECM consumption function with fixed seasonals. Hunt and Judge (1996) found similar results for various energy consumers’ expenditure categories.

Therefore, following from these previous works, we estimate an ECM version of equation (1) for UK energy demand as follows:

\[A(L)\Delta e_t = \mu_t + \gamma_t + B(L)\Delta y_t + C(L)\Delta p_t + \lambda(e_{t-1} - \alpha_1 y_{t-1} - \alpha_2 p_{t-1}) + \psi \text{TEMP}_t + \epsilon_t \]

(6)

where \(A(L) \) is the polynomial lag operator \(1 - \phi_1 L - \phi_2 L^2 - \phi_3 L^3 \), \(B(L) \) the polynomial lag operator \(\pi_0 + \pi_1 L + \pi_2 L^2 + \pi_3 L^3 \), and, \(C(L) \) the polynomial lag operator \(\varphi_0 + \varphi_1 L + \varphi_2 L^2 + \varphi_3 L^3 \). \(e_t \) is the natural logarithm of the energy series, \(y_t \) the natural logarithm of GDP, \(p_t \) the natural logarithm of the real price of that form of energy, and \(\text{TEMP}_t \) the average temperature. \(\alpha_1 \) and \(\alpha_2 \) represent the long-run income and price elasticities respectively, \(\psi \) represents

\[\epsilon_t \sim \text{NID}(0, \sigma^2) \]
the effect of a change in temperature on energy demand and λ the coefficient on the EC term. μ_t, γ_t, and ε_t are as defined above.

Estimation

The estimated equation therefore consists of equation (6) with (2) (3) and (5). All the disturbance terms are assumed to be independent and mutually uncorrelated with each other. As seen above, the hyperparameters σ^2_η, σ^2_ξ, σ^2_w, and σ^2_ε have an important role to play and govern the basic properties of the model. The hyperparameters, along with the other parameters of the model are estimated by maximum likelihood and from these the optimal estimates of β_T, μ_T and γ_T are estimated by the Kalman filter which represent the latest estimates of the level and slope of the trend and the seasonal components. The optimal estimates of the trend and seasonal components over the whole sample period are further calculated by a smoothing algorithm of the Kalman filter. The software package STAMP 5.0 (Koopman *et al.*, 1995) was used to estimate the models for each of the energy series, the results of which are given in the following section.
III Results

Equation (6) was estimated for Coal, Gas, Petroleum, Electricity, and Total Energy using quarterly data from 1972q1 to 1995q4 saving three years (12 observations) for the post-sample prediction tests. The preferred models for each fuel types are given in Table 2. The methodology employed was to select a suitable restricted model by testing down from the over-parameterised model of equation (6) which satisfied parameter restrictions without violating the diagnostic tests detailed in Table 2. The Likelihood Ratio (LR) test was normally used when choosing between different restrictions regarding the hyperparameters.\(^9\) Finally the preferred model for each energy-type was re-estimated and tested, via the LR test, for the following restrictions:

(a) deterministic seasonal dummies;

(b) a deterministic time trend;

(c) a deterministic time trend with deterministic seasonal dummies;

(d) no trend;

(e) no trend with deterministic seasonal dummies.\(^{10}\)

\(^9\) Testing for zero restrictions on various hyperparameters occasionally resulted in an *increase* in the Log-Likelihood value, which rendered the LR test invalid. However, Harvey (1985) states that these kinds of tests are subject to some statistical problems (p. 220). Therefore, goodness of fit measures, diagnostic tests, etc were used as a guide.

\(^{10}\) Although not all tests were feasible for all energy types given they were non-nested.
Table 2: Estimated Elasticities, Hyperparameters and Diagnostics from the ECM/BSM models, 1972q1 - 1995q4

<table>
<thead>
<tr>
<th></th>
<th>Coal</th>
<th>Gas</th>
<th>Electricity</th>
<th>Petroleum</th>
<th>Total Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity Estimates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-Run Income</td>
<td>1.688</td>
<td>0.675</td>
<td>0.817</td>
<td>0.835</td>
<td>0.534</td>
</tr>
<tr>
<td>Short-Run Income</td>
<td>0.950</td>
<td>0.526</td>
<td>0.672</td>
<td>0.583</td>
<td>0.645</td>
</tr>
<tr>
<td>Long-run Price</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-0.150</td>
<td>-0.182</td>
</tr>
<tr>
<td>Short-Run Price</td>
<td>0</td>
<td>0</td>
<td>-0.286</td>
<td>-0.101</td>
<td>-0.158</td>
</tr>
<tr>
<td>Estimated Coefficients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.018</td>
<td>-0.043</td>
<td>-0.021</td>
<td>-0.011</td>
<td>-0.023</td>
</tr>
<tr>
<td>EC</td>
<td>-0.665</td>
<td>-0.932</td>
<td>-0.919</td>
<td>-0.659</td>
<td>-0.868</td>
</tr>
<tr>
<td>Estimated Hyperparameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma^2_{\varepsilon} \times 10^{-4}$</td>
<td>23.117</td>
<td>3.846</td>
<td>0.551</td>
<td>2.151</td>
<td>2.000</td>
</tr>
<tr>
<td>$\sigma^2_{\eta} \times 10^{-4}$</td>
<td>1.297</td>
<td>0</td>
<td>1.062</td>
<td>0</td>
<td>0.647</td>
</tr>
<tr>
<td>$\sigma^2_{\xi} \times 10^{-4}$</td>
<td>0</td>
<td>0.059</td>
<td>0</td>
<td>0.017</td>
<td>0</td>
</tr>
<tr>
<td>$\sigma^2_{\omega} \times 10^{-4}$</td>
<td>0.640</td>
<td>3.398</td>
<td>0.491</td>
<td>1.296</td>
<td>0.110</td>
</tr>
<tr>
<td>Nature of Trend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local Level Model</td>
<td>Smooth Trend Model</td>
<td>Local Level Model</td>
<td>Smooth Trend Model</td>
<td>Local Level Model</td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Error</td>
<td>5.59%</td>
<td>4.03%</td>
<td>2.03%</td>
<td>2.63%</td>
<td>2.02%</td>
</tr>
<tr>
<td>Normality</td>
<td>0.51</td>
<td>0.76</td>
<td>1.05</td>
<td>0.15</td>
<td>0.18</td>
</tr>
<tr>
<td>H(30)</td>
<td>0.65</td>
<td>1.46</td>
<td>1.22</td>
<td>0.65</td>
<td>0.46</td>
</tr>
<tr>
<td>r(1)</td>
<td>0.01</td>
<td>-0.06</td>
<td>0.00</td>
<td>0.06</td>
<td>-0.12</td>
</tr>
<tr>
<td>r(8)</td>
<td>0.21</td>
<td>0.01</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>DW</td>
<td>1.91</td>
<td>2.09</td>
<td>1.99</td>
<td>1.88</td>
<td>2.09</td>
</tr>
<tr>
<td>Q(8,6)</td>
<td>7.72</td>
<td>4.97</td>
<td>2.27</td>
<td>4.11</td>
<td>5.93</td>
</tr>
<tr>
<td>R^2_t</td>
<td>0.85</td>
<td>0.94</td>
<td>0.92</td>
<td>0.93</td>
<td>0.92</td>
</tr>
<tr>
<td>Predictive Tests (96q1-98q4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\chi^2_{(1,2)}$</td>
<td>8.02</td>
<td>41.02**</td>
<td>9.99</td>
<td>3.82</td>
<td>8.77</td>
</tr>
<tr>
<td>Cusum t</td>
<td>-0.82</td>
<td>0.25</td>
<td>-0.63</td>
<td>0.44</td>
<td>0.47</td>
</tr>
<tr>
<td>LR tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test a) $\chi^2_{(1)}$</td>
<td>6.59*</td>
<td>105.68**</td>
<td>69.39**</td>
<td>111.20**</td>
<td>5.86*</td>
</tr>
<tr>
<td>Test b) $\chi^2_{(1)}$</td>
<td>5.45*</td>
<td>58.30**</td>
<td>n/a</td>
<td>22.38**</td>
<td>n/a</td>
</tr>
<tr>
<td>Test c) $\chi^2_{(2)}$</td>
<td>11.48**</td>
<td>134.57**</td>
<td>n/a</td>
<td>132.60**</td>
<td>n/a</td>
</tr>
<tr>
<td>Test d) $\chi^2_{(2)}$</td>
<td>19.42**</td>
<td>44.09**</td>
<td>63.19**</td>
<td>6.29*</td>
<td>30.11**</td>
</tr>
<tr>
<td>Test e) $\chi^2_{(3)}$</td>
<td>24.87**</td>
<td>122.79**</td>
<td>100.05**</td>
<td>119.90**</td>
<td>36.10**</td>
</tr>
</tbody>
</table>
Notes: 1. H(30) is the test for heteroscedasticity, approximately distributed as $F_{30,30}$; r(1) and r(8) are the serial correlation coefficients at the 1st and 9th lag respectively; DW is the Durbin Watson Statistic; Q(8,6) is the Box-Ljung Q-statistics based on the first 8 residuals autocorrelations and distributed as χ^2_{12}; R^2_s is the coefficient of determination based on the differences around the seasonal mean; χ^2_{12} is the post-sample prediction failure test; The Cusum t is the test of parameter consistency, approximately distributed as the t-distribution.

2. The restrictions imposed for the LR tests are explained in the text (** indicates significant at the 1% level and * indicates significance at the 5% level).

3. The coal equation included impulse dummies for 1974q1, 1980q1, 1984q2. The Petroleum equation included an impulse dummy for 1981q1. These, were included to ensure the residuals were white noise, in particular to ensure normality.

This acted as a final check to ensure that the stochastic versions were always accepted by the data and allowed for a comparison of the estimated long-run price and income elasticities.

Overall the models appear to fit the data very well with almost all diagnostic tests passed. The LR tests clearly indicate that the stochastic seasonal specifications are superior to deterministic seasonal dummies, hence further discussion will be limited given the space constraint. The LR tests also indicate that in all cases some form of stochastic specification for technical progress is preferred to the deterministic time trend or no trend at all. It is also clear that various types of stochastic processes are found for the different energy types which are discussed in more detail below.

11 This is despite the temperature variable being consistently significant.

12 However, the evolving seasonals for each energy type are presented in Figures 1 – 5 as an illustration.
Coal

The preferred specification for coal finds no role for price in either the short and the long run. The estimated income elasticities of 0.95 and 1.69 in the short- and long-run respectively are surprisingly high. The estimated trend is the Local Level Model with Drift and is illustrated in the top left hand chart of Figure 1. This clearly indicates a long term underlying fall in the demand for coal of about -5.3% per year and although the hyperparameter σ^2 is non-zero, there is little variation around this trend. Interestingly, when the trend is omitted completely, tests (d) and (e), the long-run income elasticity is negative and significant suggesting that Coal is an inferior good similar to the results of Fouquet, et al. (1993 and 1997). This is clearly due to the omission of any ‘technical progress’ term to model the long term decline of coal and hence an under-estimate of the long-run income elasticity. It is appropriate, therefore, to include a measure of technical progress in the coal demand model to separate out the ‘exogenous’ effect from the (positive) income effect. That said however, the high income elasticity estimates obtained here are difficult to justify intuitively.\[13\]

\[13\] It should be emphasised that this is final consumption and therefore excludes the electricity generation sector where the majority of coal is consumed.
Figure 1: Coal
Gas

When estimating the gas demand function it did not prove possible to produce an equation that passed all diagnostic tests. The preferred equation therefore suffers from some slight instability since it fails one of the predictive failure tests. The preferred specification, similar to coal, does not include a role for price. The long-run and short-run income elasticities are 0.67 and 0.53 respectively being generally lower than those obtained by Fouquet, et al. (1993 & 1997) although their specifications included prices but no trend. Here the Smooth Trend Model was preferred, but gives ‘negative’ technical progress during the 1970s but flattens out in the 1980s and 1990s (as illustrated by the top left hand chart of Figure 2). This probably reflects the ‘exogenous’ shift in tastes away from town gas and solid fuel during the 1970s. However, the shape of the slope (illustrated in the top right hand chart of Figure 2) would suggest that there were changes (albeit small relative to the 1970s) about the mid 1980s and early 1990s.
Electricity

The preferred specification finds only a short-run role for prices with an estimated elasticity of -0.29, with short- and long-run income elasticities of 0.67 and 0.82 respectively. Again these are generally higher than those obtained by Fouquet, et al. (1993 & 1997). The Trend is found to be the Local Level Model (as illustrated in the top right hand chart of Figure 3) where there is no slope term but the variation in the trend comes through via the level. Despite there being no slope the shape of the trend shows an interesting pattern, reflecting different phases of technical progress: approximating to the 1970s, the early 1980s, the late 1980s/early 1990s and the mid 1990s. When comparing the electricity trend with the price series (top right hand chart of Figure 6) there would appear to be a close (inverse) relationship.
Figure 3: Electricity
Petroleum

The preferred specification gives estimates of 0.84 and -0.15 for the long-run income and price elasticities respectively with the Smooth Trend Model. The trend is illustrated in the top left hand chart of Figure 4 and again produces clear phases of technical progress. There appears to have been a distinct slow down in technical progress in the late 1970s followed by a resumption of a rapid decline during the early 1980s. This decline halted about 1986/7 when there was a distinct slowdown that continued until about 1993 when the progress continued again.\(^\text{14}\) The top right hand chart of figure 4 illustrates that this is driven by the stochastic slope which would appear to be inversely linked to real energy price index used for petroleum (see the bottom left hand chart in Figure 6).

\(^{14}\) In fact technical progress became ‘negative’ for a period during the very late 1980s early 1990s as the UK economy moved onto recession.
Figure 4: Petroleum
Total Energy

The estimated equation for total energy gives a long-run income elasticity of 0.53 with a larger short run figure of 0.65. Although the elasticities are a little larger (probably due to the inclusion of technical progress terms) this differential of the short to the long run is similar to the annual studies by Hunt and Manning (1989) and Hunt and Witt (1995). The long- and short-run price elasticities are -0.18 and -0.16 respectively. These estimates are in contrast to the recent results by Clements and Madlener (1999) who estimated a range of annual and quarterly models for UK residential aggregate energy demand. They conclude by stating that they were “unable to reject a zero price elasticity” (p. 185). Returning to our results the preferred trend is the Local Level Model and, as with Electricity, despite the slope being zero, the trend still exhibits an interesting shape as illustrated in the top right hand chart of Figure 5. Although it is not as smooth, since the source of the stochastic trend is different, the general pattern is very similar to that found for petroleum, and appears to be (inversely) related to the price series (and possibly income during the recession of the early 1990s).

15 Clements and Madlener (1999) do specify a deterministic time trend but no results are presented in the paper for the trend.
Figure 5: Total Energy

DLEt
Irr=__________

DLEt
Trend=__________

Sea=__________

Sea_1=__________ Sea_2=__________

Sea_3=__________ Sea_4=__________

-0.04 -0.02 0 0.02 0.04 0.06

8.12 8.08 8.04 8.00 7.96 7.92 7.88

-0.12 -0.08 -0.04 0 0.04 0.08 0.12

-0.12 -0.08 -0.04 0 0.04 0.08 0.12
IV SUMMARY AND CONCLUSION

In this paper we have discussed the importance of, not only modelling technical progress when estimating energy demand functions, but also modelling it in a non-linear flexible way. We argue that technical progress comes about from a number of exogenous factors but could also be induced by price and income ‘shocks’. It is important, therefore, to incorporate the most flexible possible specification and test down for the most appropriate specification that best fits the data.

We have found for all UK energy types that a specification including some form of technical progress is preferred to one where it is omitted. Moreover, specifications that incorporate a non-linear trend term for technical progress are preferred to the traditional assumption of a deterministic linear time trend. The results suggest that in the UK there have been distinct phases in the process of technical progress as illustrated above. At present it is not possible to determine when these phases are driven by exogenous factors or when they are driven by endogenous factors such as changes in price (and possibly income) as inspection of the charts suggest. A full explanation is hopefully the basis of future research.
DATA APPENDIX

The data set is quarterly seasonally unadjusted for the period 1971q1 to 1998q4.

Energy Consumption

The energy consumption data (E_t) refers to UK Final Consumption of ‘coal’, ‘gas’, ‘petroleum’, electricity’ and ‘total energy’ in million tonnes of oil equivalent (mtoe) from various issues of the *UK Energy Trends* up to June 1999. Data before 1992 have been converted to mtoe from millions of therms. The ‘coal’ series refers to coal and other solid fuels and ‘gas’ includes town and natural gas.

Gross Domestic Product

The nominal and constant prices expenditure estimates of UK Gross Domestic Product GDP(E) at market prices were kindly supplied by the Office of National Statistics (ONS) since the seasonally unadjusted data are not published. Y_t is the constant GDP(E) series re-based and indexed to 1990 = 100. The implicit GDP(E) price deflator at 1990=100 was calculated from the nominal and constant price series.

Energy Prices

The nominal price index for each energy type were derived by weighting the appropriate GB Domestic and Industrial Fuel Price Indices from various issues of the *UK Energy Trends* up to June 1999. The real index of energy prices (P_t) for each energy type was found by deflating the nominal index by the implicit GDP(E) deflator. The ‘total energy’ price was derived as a weighted average of the individual energy types.

Temperature

TEMP_t refers to the average GB quarterly temperature in degrees Celsius taken from various issues of the *UK Digest of Energy Statistics (DUKES)*.
REFERENCES

LIST OF SURREY ENERGY ECONOMICS DISCUSSION PAPER SERIES (SEEDS) 73-99

SEEDS OCCASIONAL PAPER and SEEDS TECHNICAL PAPER

SEEDS Number

99 Modelling Technical Progress: An Application of The Stochastic Trend to UK Energy Demand
Lester C Hunt, Guy Judge and Yasushi Ninomiya ISBN 1852372273 January 2000

98 Regulatory Reform of the UK Gas Market - The Case of the Storage Auction
David Hawdon and Nicola Stevens ISBN 1852372257 August 1999

Ahmed Al-Azzam and David Hawdon ISBN 1852372249 July 1999

96 The Policy of Power and the Power of Policy: Energy Policy in Honduras
(final paper of subs 97/98)

95 Efficiency Considerations in the Electricity Supply Industry: The Case of Iran

94 Economic Models of OPEC Behaviour and the Role of Saudi Arabia

93 Modelling Saudi Arabia Behaviour in the World Oil Market 1976-1996

92 The Socio Economic Impact of Renewable Energy Technologies
Hayley Myles ISBN 1852372087 March 1998

91 Pressure Groups and Political Forces in Britain’s Privatisation Programme
(final paper subs 96/97)

90 Environmental Information and the Demand for Super Unleaded Petrol in the United Kingdom
Roger Fouquet ISBN 1852371951 June 1997

89 Petrol Price Asymmetries Revisited

88 Withdrawn 11/97
Performance of Power Sectors in Developing Countries - A Study of Efficiency and World Bank Policy using Data Envelopment Analysis
David Hawdon ISBN 1852371900 August 1996

87 UK Energy Policy: Findings from Two Surveys

SEEDS TECHNICAL PAPER
No.1 Using LAMBDA for DEA
David Hawdon and Ian M McQueen ISBN 1852371811 April 1996

PTO
SEEDS No.

86 An Analysis of UK Energy Demand Using Multivariate Cointegration

85 Freeing the Nuclear Industry

84 The Efficiency of the National Electricity Board in Malaysia - An Intercountry
 Comparison
 Jamaluddin bin Mohd Yunos and David Hawdon ISBN 185237165X January 1996

83 Privatisation: Saving the British Coal Industry?

82 Electricity Privatisation in England and Wales: Progress and Problems
 Colin Robinson ISBN 1852371528 August 1995

SEEC OCCASIONAL PAPER
No.2 The S.E.E.C. United Kingdom Energy Demand Forecast (1995-2000) Update
 Roger Fouquet, David Hawdon, Peter J G Pearson, Colin Robinson
 and Paul Stevens ISBN 185237151X July 1995

1 The Nuclear Review
 David Hawdon (Ed): Elroy Dimson, Robin Jeffrey, Martin O'Neill, M.P., Colin Robinson
 and Mike Staunton ISBN 1852371501 April 1995

80 Regulation as a Means of Introducing Competition
 Colin Robinson ISBN 185237148X February 1995

79 Privatising Nuclear Power: evidence for the review of future prospects for
 nuclear power

78 Energy, Externalities and Environmental Quality: Will Development
 Cure the Ills it Creates?

77 The Demand for Car Fuel Efficiency: An Hedonic Price Approach

76 Economics and the Environment - the Shadow Price of Greenhouse Gases
 and Aerosols

75 End Use Elasticities

74 A Model of Relative Price Elasticities from the Second
 Moments of Demand

Details of SEEDS 1-73, prices and Subscription Scheme on request.